CLINDAMYCIN IN 5% DEXTROSE INJECTION

To reduce the development of drug-resistant bacteria and maintain the effectiveness of CLINDAMYCIN IN 5% DEXTROSE INJECTION and other antibacterial drugs, CLINDAMYCIN IN 5% DEXTROSE INJECTION should be used only to treat or prevent infections that are proven or strongly suspected to be caused by bacteria.

Sterile Solution is for Intravenous Use

CLINDAMYCIN IN 5% DEXTROSE INJECTION in the GALAXY bag is For Intravenous Use Only

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
</table>

Clostridium difficile-associated diarrhea (CDAD) has been reported with use of nearly all antibacterial agents, including Clindamycin in 5% Dextrose Injection and may range in severity from mild diarrhea to fatal colitis. Treatment with antibacterial agents alters the normal flora of the colon leading to overgrowth of *C. difficile*.

Because Clindamycin in 5% Dextrose therapy has been associated with severe colitis which may end fatally, it should be reserved for serious infections where less toxic antimicrobial agents are inappropriate, as described in the INDICATIONS AND USAGE section. It should not be used in patients with nonbacterial infections such as most upper respiratory tract infections. *C. difficile* produces toxins A and B which contribute to the development of CDAD. Hypertoxin producing strains of *C. difficile* cause increased morbidity and mortality, as these infections can be refractory to antimicrobial therapy and may require colectomy. CDAD must be considered in all patients who present with diarrhea following antibiotic use. Careful medical history is necessary since CDAD has been reported to occur over two months after the administration of antibacterial agents.

If CDAD is suspected or confirmed, ongoing antibiotic use not directed against *C. difficile* may need to be discontinued. Appropriate fluid and electrolyte management, protein supplementation, antibiotic treatment of *C. difficile*, and surgical evaluation should be instituted as clinically indicated.

DESCRIPTION

Clindamycin in 5% Dextrose Injection in the GALAXY plastic container for intravenous use is composed of clindamycin phosphate equivalent to 300, 600 and 900 mg of clindamycin premixed with 5% dextrose as a sterile solution. Disodium edetate has been added at a concentration of 0.04 mg/mL. The pH has been adjusted with sodium hydroxide and/or hydrochloric acid. Clindamycin is a semisynthetic antibiotic produced by a 7(S)-chloro-substitution of the 7(R)-hydroxyl group of the parent compound lincomycin.

The chemical name of clindamycin phosphate is L-threo-α-D-galacto-Octopyranoside, methyl-7-chloro-6,7,8-trideoxy-6-[(1-methyl-4-propyl-2-pyrrolidinyl)carbonyl]amino]-1-thio-, 2-(dihydrogen phosphate), (2S-trans)-.
The molecular formula is \(\text{C}_{18}\text{H}_{34}\text{ClN}_{2}\text{O}_{8}\text{PS} \) and the molecular weight is 504.96.

The structural formula is represented below:

Clindamycin in 5% Dextrose Injection in the GALAXY plastic containers is for Intravenous Use. The plastic container is fabricated from a specially designed multilayer plastic, PL 2501. Solutions in contact with the plastic container can leach out certain of its chemical components in very small amounts within the expiration period. The suitability of the plastic has been confirmed in tests in animals according to the USP biological tests for plastic containers, as well as by tissue culture toxicity studies.

CLINICAL PHARMACOLOGY

Distribution

Biologically inactive clindamycin phosphate is converted to active clindamycin. By the end of short-term intravenous infusion, peak serum levels of active clindamycin are reached.

After intramuscular injection of clindamycin phosphate, peak levels of active clindamycin are reached within 3 hours in adults and 1 hour in pediatric patients. Serum level curves may be constructed from intravenous peak serum levels as given in Table 1 by application of elimination half-lives (see **Excretion**).

Serum levels of clindamycin can be maintained above the \textit{in vitro} minimum inhibitory concentrations for most indicated organisms by administration of clindamycin phosphate every 8 to 12 hours in adults and every 6 to 8 hours in pediatric patients, or by continuous intravenous infusion. An equilibrium state is reached by the third dose.

No significant levels of clindamycin are attained in the cerebrospinal fluid even in the presence of inflamed meninges.

Metabolism

\textit{In vitro} studies in human liver and intestinal microsomes indicated that clindamycin is predominantly metabolized by Cytochrome P450 3A4 (CYP3A4), with minor contribution from CYP3A5, to form clindamycin sulfoxide and a minor metabolite, N-desmethylclindamycin.

Excretion
Biologically inactive clindamycin phosphate disappears rapidly from the serum; the average elimination half-life is 6 minutes; however, the serum elimination half-life of active clindamycin is about 3 hours in adults and 2½ hours in pediatric patients.

Special Populations

Renal/Hepatic Impairment

The elimination half-life of clindamycin is increased slightly in patients with markedly reduced renal or hepatic function. Hemodialysis and peritoneal dialysis are not effective in removing clindamycin from the serum. Dosage schedules need not be modified in the presence of mild or moderate renal or hepatic disease.

Use in Elderly

Pharmacokinetic studies in elderly volunteers (61-79 years) and younger adults (18-39 years) indicate that age alone does not alter clindamycin pharmacokinetics (clearance, elimination half-life, volume of distribution, and area under the serum concentration-time curve) after intravenous administration of clindamycin phosphate. After oral administration of clindamycin hydrochloride, elimination half-life is increased to approximately 4.0 hours (range 3.4-5.1 h) in the elderly, compared to 3.2 hours (range 2.1-4.2 h) in younger adults. The extent of absorption, however, is not different between age groups and no dosage alteration is necessary for the elderly with normal hepatic function and normal (age-adjusted) renal function.

Serum assays for active clindamycin require an inhibitor to prevent *in vitro* hydrolysis of clindamycin phosphate.

<table>
<thead>
<tr>
<th>Dosage Regimen</th>
<th>Peak mcg/mL</th>
<th>Trough mcg/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthy Adult Males (Post equilibrium)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>600 mg intravenous in 30 min q6h</td>
<td>10.9</td>
<td>2.0</td>
</tr>
<tr>
<td>600 mg intravenous in 30 min q8h</td>
<td>10.8</td>
<td>1.1</td>
</tr>
<tr>
<td>900 mg intravenous in 30 min q8h</td>
<td>14.1</td>
<td>1.7</td>
</tr>
<tr>
<td>Pediatric Patients (first dose)*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5–7 mg/kg intravenous in 1 hour</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

*Data in this group from patients being treated for infection.

Microbiology

Mechanism of Action

Clindamycin inhibits bacterial protein synthesis by binding to the 23S RNA of the 50S subunit of the ribosome. Clindamycin is bacteriostatic.

Resistance
Resistance to clindamycin is most often caused by modification of specific bases of the 23S ribosomal RNA. Cross-resistance between clindamycin and lincomycin is complete. Because the binding sites for these antibacterial drugs overlap, cross-resistance is sometimes observed among lincosamides, macrolides and streptogramin B. Macrolide-inducible resistance to clindamycin occurs in some isolates of macrolide-resistant bacteria. Macrolide-resistant isolates of staphylococci and beta-hemolytic streptococci should be screened for induction of clindamycin resistance using the D-zone test.

Antimicrobial Activity

Clindamycin has been shown to be active against most of the isolates of the following microorganisms, both in vitro and in clinical infections, as described in the INDICATIONS AND USAGE section.

Gram-positive Bacteria

- *Staphylococcus aureus* (methicillin-susceptible strains)
- *Streptococcus pneumoniae* (penicillin-susceptible strains)
- *Streptococcus pyogenes*

Anaerobic Bacteria

- *Clostridium perfringens*
- *Fusobacterium necrophorum*
- *Fusobacterium nucleatum*
- *Peptostreptococcus anaerobius*
- *Prevotella melaninogenica*

At least 90% of the microorganisms listed below exhibit in vitro minimum inhibitory concentrations (MICs) less than or equal to the clindamycin susceptible MIC breakpoint for organisms of a similar type to those shown in Table 2. However, the efficacy of clindamycin in treating clinical infections due to these microorganisms has not been established in adequate and well-controlled clinical trials.

Gram-positive Bacteria

- *Staphylococcus epidermidis* (methicillin-susceptible strains)
- *Streptococcus agalactiae*
- *Streptococcus anginosus*
- *Streptococcus mitis*
- *Streptococcus oralis*

Anaerobic Bacteria

- *Actinomyces israelii*
- *Clostridium clostridioforme*
- *Eggerthella lenta*
- *Finegoldia (Peptostreptococcus) magna*
- *Micromonas (Peptostreptococcus) micros*
Prevotella bivia
Prevotella intermedia
Propionibacterium acnes

Susceptibility Testing Methods

When available, the clinical microbiology laboratory should provide cumulative \textit{in vitro} susceptibility test results for antimicrobial drugs used in local hospitals and practice areas to the physician as periodic reports that describe the susceptibility profile of nosocomial and community-acquired pathogens. These reports should aid the physician in selecting an antibacterial drug for treatment.

\textit{Dilution Techniques}

Quantitative methods are used to determine antimicrobial minimum inhibitory concentrations (MICs). These MICs provide estimates of the susceptibility of bacteria to antimicrobial compounds. The MICs should be determined using a standardized test method2,3 (broth and/or agar). The MIC values should be interpreted according to the criteria provided in Table 2.

\textit{Diffusion Techniques}

Quantitative methods that require the measurement of zone diameters can also provide reproducible estimates of the susceptibility of bacteria to antimicrobial compounds. The zone size should be determined using a standardized method2,5. This procedure uses paper disks impregnated with 2 mcg of clindamycin to test the susceptibility of bacteria to clindamycin. The disk diffusion breakpoints are provided in Table 2.

\textit{Anaerobic Techniques}

For anaerobic bacteria, the susceptibility to clindamycin can be determined by a standardized test method2,4. The MIC values obtained should be interpreted according to the criteria provided in Table 2.

\textbf{Table 2. Susceptibility Test Interpretive Criteria for Clindamycin}

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>Susceptibility Interpretive Criteria</th>
<th>Minimal Inhibitory Concentrations (MIC in mcg/mL)</th>
<th>Disk Diffusion (Zone Diameters in mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S</td>
<td>I</td>
<td>R</td>
</tr>
<tr>
<td>Staphylococcus spp.</td>
<td>(\leq 0.5)</td>
<td>1–2</td>
<td>(\geq 4)</td>
</tr>
<tr>
<td>Streptococcus pneumoniae and other Streptococcus spp.</td>
<td>(\leq 0.25)</td>
<td>0.5</td>
<td>(\geq 1)</td>
</tr>
<tr>
<td>Anaerobic Bacteria</td>
<td>(\leq 2)</td>
<td>4</td>
<td>(\geq 8)</td>
</tr>
</tbody>
</table>

NA = not applicable

A report of \textit{Susceptible (S)} indicates that the antimicrobial drug is likely to inhibit growth of the pathogen if the antimicrobial drug reaches the concentration usually achievable at the site of infection. A report of \textit{Intermediate (I)} indicates that the result should be
considered equivocal, and, if the microorganism is not fully susceptible to alternative, clinically feasible drugs, the test should be repeated. This category implies possible clinical applicability in body sites where the drug is physiologically concentrated or in situations where high dosage of drug can be used. This category also provides a buffer zone that prevents small, uncontrolled technical factors from causing major discrepancies in interpretation. A report of Resistant (R) indicates that the antimicrobial drug is not likely to inhibit growth of the pathogen if the antimicrobial drug reaches the concentration usually achievable at the infection site; other therapy should be selected.

Quality Control

Standardized susceptibility test procedures require the use of laboratory controls to monitor and ensure the accuracy and precision of the supplies and reagents used in the assay, and the techniques of the individuals performing the test. Standard clindamycin powder should provide the MIC ranges in Table 3. For the disk diffusion technique using the 2 mcg clindamycin disk the criteria provided in Table 2 should be achieved.

<table>
<thead>
<tr>
<th>QC Strain</th>
<th>Acceptable Quality Control Ranges</th>
<th>Minimum Inhibitory Concentration Range (mcg/mL)</th>
<th>Disk Diffusion Range (Zone Diameters in mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enterococcus faecalis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATCC 29212</td>
<td></td>
<td>4-16</td>
<td>NA</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td></td>
<td>0.06–0.25</td>
<td>NA</td>
</tr>
<tr>
<td>ATCC 29213</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td></td>
<td>NA</td>
<td>24–30</td>
</tr>
<tr>
<td>ATCC 25923</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Streptococcus pneumoniae</td>
<td></td>
<td>0.03–0.12</td>
<td>19–25</td>
</tr>
<tr>
<td>ATCC 49619</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacteroides fragilis</td>
<td></td>
<td>0.5–2</td>
<td>NA</td>
</tr>
<tr>
<td>ATCC 25285</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacteroides thetaiotaomicron</td>
<td></td>
<td>2–8</td>
<td>NA</td>
</tr>
<tr>
<td>ATCC 29741</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clostridium difficile</td>
<td></td>
<td>2–8</td>
<td>NA</td>
</tr>
<tr>
<td>ATCC 700057</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eggerthella lenta</td>
<td></td>
<td>0.06–0.25</td>
<td>NA</td>
</tr>
<tr>
<td>ATCC 43055</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 *Enterococcus faecalis* has been included in this table for quality control purposes only.
2 Quality control for *C. difficile* is performed using the agar dilution method only, all other obligate anaerobes may be tested by either broth microdilution or agar dilution methods.

NA = Not applicable
INDICATIONS AND USAGE

Clindamycin in 5% Dextrose Injection products are indicated in the treatment of serious infections caused by susceptible anaerobic bacteria.

Clindamycin in 5% Dextrose Injection products are also indicated in the treatment of serious infections due to susceptible strains of streptococci, pneumococci, and staphylococci. Its use should be reserved for penicillin-allergic patients or other patients for whom, in the judgment of the physician, a penicillin is inappropriate. Because of the risk of antibiotic-associated pseudomembranous colitis, as described in the BOXED WARNING, before selecting clindamycin the physician should consider the nature of the infection and the suitability of less toxic alternatives (e.g., erythromycin).

Bacteriologic studies should be performed to determine the causative organisms and their susceptibility to clindamycin.

Indicated surgical procedures should be performed in conjunction with antibiotic therapy.

Clindamycin in 5% Dextrose Injection is indicated in the treatment of serious infections caused by susceptible strains of the designated organisms in the conditions listed below:

Lower respiratory tract infections including pneumonia, empyema, and lung abscess caused by anaerobes, *Streptococcus pneumoniae*, other streptococci (except *E. faecalis*), and *Staphylococcus aureus*.

Skin and skin structure infections caused by *Streptococcus pyogenes*, *Staphylococcus aureus*, and anaerobes.

Gynecological infections including endometritis, nongonococcal tubo-ovarian abscess, pelvic cellulitis, and postsurgical vaginal cuff infection caused by susceptible anaerobes.

Intra-abdominal infections including peritonitis and intra-abdominal abscess caused by susceptible anaerobic organisms.

Septicemia caused by *Staphylococcus aureus*, streptococci (except *Enterococcus faecalis*), and susceptible anaerobes.

Bone and joint infections including acute hematogenous osteomyelitis caused by *Staphylococcus aureus* and as adjunctive therapy in the surgical treatment of chronic bone and joint infections due to susceptible organisms.

To reduce the development of drug-resistant bacteria and maintain the effectiveness of Clindamycin in 5% Dextrose Injection and other antibacterial drugs, Clindamycin in 5% Dextrose Injection should be used only to treat or prevent infections that are proven or strongly suspected to be caused by susceptible bacteria. When culture and susceptibility information are available, they should be considered in selecting or modifying antibacterial therapy. In the absence of such data, local epidemiology and susceptibility patterns may contribute to the empiric selection of therapy.

CONTRAINDICATIONS
This drug is contraindicated in individuals with a history of hypersensitivity to preparations containing clindamycin or lincomycin.

WARNINGS

See BOXED WARNING.

Clostridium difficile Associated Diarrhea

Clostridium difficile associated diarrhea (CDAD) has been reported with use of nearly all antibacterial agents, including Clindamycin in 5% Dextrose Injection, and may range in severity from mild diarrhea to fatal colitis. Treatment with antibacterial agents alters the normal flora of the colon leading to overgrowth of *C. difficile*.

C. difficile produces toxins A and B which contribute to the development of CDAD. Hypertoxin producing strains of *C. difficile* cause increased morbidity and mortality, as these infections can be refractory to antimicrobial therapy and may require colectomy. CDAD must be considered in all patients who present with diarrhea following antibiotic use. Careful medical history is necessary since CDAD has been reported to occur over two months after the administration of antibacterial agents.

If CDAD is suspected or confirmed, ongoing antibiotic use not directed against *C. difficile* may need to be discontinued. Appropriate fluid and electrolyte management, protein supplementation, antibiotic treatment of *C. difficile*, and surgical evaluation should be instituted as clinically indicated.

Anaphylactic and Severe Hypersensitivity Reactions

Anaphylactic shock and anaphylactic reactions have been reported (see ADVERSE REACTIONS).

Severe hypersensitivity reactions, including severe skin reactions such as toxic epidermal necrolysis (TEN), drug reaction with eosinophilia and systemic symptoms (DRESS), and Stevens-Johnson syndrome (SJS), some with fatal outcome, have been reported (see ADVERSE REACTIONS).

In case of such an anaphylactic or severe hypersensitivity reaction, discontinue treatment permanently and institute appropriate therapy.

A careful inquiry should be made concerning previous sensitivities to drugs and other allergens.

Usage in Meningitis - Since clindamycin does not diffuse adequately into the cerebrospinal fluid, the drug should not be used in the treatment of meningitis.

PRECAUTIONS

General

Review of experience to date suggests that a subgroup of older patients with associated severe illness may tolerate diarrhea less well. When clindamycin is indicated in these patients, they should be carefully monitored for change in bowel frequency.
Clindamycin in 5% Dextrose Injection products should be prescribed with caution in individuals with a history of gastrointestinal disease, particularly colitis.

Clindamycin in 5% Dextrose Injection should be prescribed with caution in atopic individuals.

Certain infections may require incision and drainage or other indicated surgical procedures in addition to antibiotic therapy.

The use of Clindamycin in 5% Dextrose Injection may result in overgrowth of nonsusceptible organisms-particularly yeasts. Should superinfections occur, appropriate measures should be taken as indicated by the clinical situation.

Clindamycin dosage modification may not be necessary in patients with renal disease. In patients with moderate to severe liver disease, prolongation of clindamycin half-life has been found. However, it was postulated from studies that when given every eight hours, accumulation should rarely occur. Therefore, dosage modification in patients with liver disease may not be necessary. However, periodic liver enzyme determinations should be made when treating patients with severe liver disease.

Prescribing Clindamycin in 5% Dextrose Injection in the absence of a proven or strongly suspected bacterial infection or a prophylactic indication is unlikely to provide benefit to the patient and increases the risk of the development of drug-resistant bacteria.

Information for Patients

Patients should be counseled that antibacterial drugs including Clindamycin in 5% Dextrose Injection should only be used to treat bacterial infections. They do not treat viral infections (e.g., the common cold). When Clindamycin in 5% Dextrose Injection is prescribed to treat a bacterial infection, patients should be told that although it is common to feel better early in the course of therapy, the medication should be taken exactly as directed. Skipping doses or not completing the full course of therapy may (1) decrease the effectiveness of the immediate treatment and (2) increase the likelihood that bacteria will develop resistance and will not be treatable by Clindamycin in 5% Dextrose Injection or other antibacterial drugs in the future.

Diarrhea is a common problem caused by antibiotics which usually ends when the antibiotic is discontinued. Sometimes after starting treatment with antibiotics, patients can develop watery and bloody stools (with or without stomach cramps and fever) even as late as two or more months after having taken the last dose of the antibiotic. If this occurs, patients should contact their physician as soon as possible.

Laboratory Tests

During prolonged therapy periodic liver and kidney function tests and blood counts should be performed.

Drug Interactions

Clindamycin has been shown to have neuromuscular blocking properties that may enhance the action of other neuromuscular blocking agents. Therefore, it should be used with caution in patients receiving such agents.
Clindamycin is metabolized predominantly by CYP3A4, and to a lesser extent by
CYP3A5, to the major metabolite clindamycin sulfoxide and minor metabolite N-
desmethyldyclindamycin. Therefore inhibitors of CYP3A4 and CYP3A5 may increase
plasma concentrations of clindamycin and inducers of these isoenzymes may reduce
plasma concentrations of clindamycin. In the presence of strong CYP3A4 inhibitors,
monitor for adverse reactions. In the presence of strong CYP3A4 inducers such as
rifampicin, monitor for loss of effectiveness.

In vitro studies indicate that clindamycin does not inhibit CYP1A2, CYP2C9, CYP2C19,
CYP2E1 or CYP2D6 and only moderately inhibits CYP3A4.

Antagonism has been demonstrated between clindamycin and erythromycin *in vitro*.
Because of possible clinical significance, the two drugs should not be administered
concurrently.

Carcinogenesis, Mutagenesis, Impairment of Fertility

Long term studies in animals have not been performed with clindamycin to evaluate
carcinogenic potential. Genotoxicity tests performed included a rat micronucleus test and
an Ames Salmonella reversion test. Both tests were negative.

Fertility studies in rats treated orally with up to 300 mg/kg/day (approximately 1.1 times
the highest recommended adult human dose based on mg/m²) revealed no effects on
fertility or mating ability.

Pregnancy: Teratogenic effects

In clinical trials with pregnant women, the systemic administration of clindamycin during
the second and third trimesters, has not been associated with an increased frequency of
congenital abnormalities.

Clindamycin should be used during the first trimester of pregnancy only if clearly
needed. There are no adequate and well-controlled studies in pregnant women during the
first trimester of pregnancy. Because animal reproduction studies are not always
predictive of the human response, this drug should be used during pregnancy only if
clearly needed.

Reproduction studies performed in rats and mice using oral doses of clindamycin up to
600 mg/kg/day (2.1 and 1.1 times the highest recommended adult human dose based on
mg/m², respectively) or subcutaneous doses of clindamycin up to 250 mg/kg/day (0.9 and
0.5 times the highest recommended adult human dose based on mg/m², respectively)
revealed no evidence of teratogenicity.

Nursing Mothers

Clindamycin has been reported to appear in breast milk in the range of 0.7 to 3.8 mcg/mL
at dosages of 150 mg orally to 600 mg intravenously. Clindamycin has the potential to
cause adverse effects on the breastfed infant’s gastrointestinal flora. If oral or
intravenous clindamycin is required by a nursing mother, it is not a reason to discontinue
breastfeeding, but an alternate drug may be preferred. Monitor the infant for possible
adverse effects on the gastrointestinal flora, such as diarrhea, candidiasis (thrush, diaper rash) or rarely, blood in the stool indicating possible antibiotic-associated colitis.

The developmental and health benefits of breastfeeding should be considered along with the mother's clinical need for clindamycin and any potential adverse effects on the breastfed child from clindamycin or from the underlying maternal condition.

Pediatric Use

When Clindamycin in 5% Dextrose Injection is administered to the pediatric population (birth to 16 years) appropriate monitoring of organ system functions is desirable.

Usage in Newborns and Infants

The potential for the toxic effect in the pediatric population from chemicals that may leach from the single dose premixed intravenous preparation in plastic has not been evaluated. See **WARNINGS**.

Geriatric Use

Clinical studies of clindamycin did not include sufficient numbers of patients age 65 and over to determine whether they respond differently from younger patients. However, other reported clinical experience indicates that antibiotic-associated colitis and diarrhea (due to *Clostridium difficile*) seen in association with most antibiotics occur more frequently in the elderly (>60 years) and may be more severe. These patients should be carefully monitored for the development of diarrhea.

Pharmacokinetic studies with clindamycin have shown no clinically important differences between young and elderly subjects with normal hepatic function and normal (age-adjusted) renal function after oral or intravenous administration.

ADVERSE REACTIONS

The following reactions have been reported with the use of clindamycin.

Infections and Infestations: *Clostridium difficile* colitis

Gastrointestinal: Antibiotic-associated colitis (see **WARNINGS**), pseudomembranous colitis, abdominal pain, nausea, and vomiting. The onset of pseudomembranous colitis symptoms may occur during or after antibacterial treatment (see **WARNINGS**). An unpleasant or metallic taste has been reported after intravenous administration of the higher doses of clindamycin phosphate.

Hypersensitivity Reactions: Maculopapular rash and urticaria have been observed during drug therapy. Generalized mild to moderate morbilliform-like skin rashes are the most frequently reported of all adverse reactions.

Severe skin reactions such as Toxic Epidermal Necrolysis, some with fatal outcome, have been reported (see **WARNINGS**). Cases of Acute Generalized Exanthematous Pustulosis (AGEP), erythema multiforme, some resembling Stevens-Johnson syndrome, have been associated with clindamycin. Anaphylactic shock, anaphylactic reaction and hypersensitivity have also been reported (see **WARNINGS**).
Skin and Mucous Membranes: Pruritus, vaginitis, angioedema and rare instances of exfoliative dermatitis have been reported (see **Hypersensitivity Reactions**).

Liver: Jaundice and abnormalities in liver function tests have been observed during clindamycin therapy.

Renal: Although no direct relationship of clindamycin to renal damage has been established, renal dysfunction as evidenced by azotemia, oliguria, and/or proteinuria has been observed.

Hematopoietic: Transient neutropenia (leukopenia) and eosinophilia have been reported. Reports of agranulocytosis and thrombocytopenia have been made. No direct etiologic relationship to concurrent clindamycin therapy could be made in any of the foregoing.

Immune System: Drug reaction with eosinophilia and systemic symptoms (DRESS) cases have been reported.

Local Reactions: Thrombophlebitis has been reported after intravenous infusion. Reactions can be minimized by avoiding prolonged use of indwelling intravenous catheters.

Musculoskeletal: Poliarthritis cases have been reported.

Cardiovascular: Cardiopulmonary arrest and hypotension have been reported following too rapid intravenous administration (see **DOSAGE AND ADMINISTRATION**).

OVERDOSAGE

Significant mortality was observed in mice at an intravenous dose of 855 mg/kg and in rats at an oral or subcutaneous dose of approximately 2618 mg/kg. In the mice, convulsions and depression were observed.

Hemodialysis and peritoneal dialysis are not effective in removing clindamycin from the serum.

DOSAGE AND ADMINISTRATION

If diarrhea occurs during therapy, this antibiotic should be discontinued (see **WARNING** box).

Adults: Parenteral (Intravenous Administration): Serious infections due to aerobic gram-positive cocci and the more susceptible anaerobes (NOT generally including *Bacteroides fragilis*, *Peptococcus* species and *Clostridium* species other than *Clostridium perfringens*):

600-1200 mg/day in 2, 3 or 4 equal doses.

More severe infections, particularly those due to proven or suspected *Bacteroides fragilis*, *Peptococcus* species, or *Clostridium* species other than *Clostridium perfringens*:

1200-2700 mg/day in 2, 3 or 4 equal doses.

For more serious infections, these doses may have to be increased. In life-threatening situations due to either aerobes or anaerobes these doses may be increased. Doses of as
much as 4800 mg daily have been given intravenously to adults. See Dilution for Intravenous use and Intravenous Infusion Rates section below.

Alternatively, drug may be administered in the form of a single rapid infusion of the first dose followed by continuous intravenous infusion as follows:
To maintain serum clindamycin levels

<table>
<thead>
<tr>
<th></th>
<th>Rapid infusion rate</th>
<th>Maintenance infusion rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Above 4 mcg/mL</td>
<td>10 mg/min for 30 min</td>
<td>0.75 mg/min</td>
</tr>
<tr>
<td>Above 5 mcg/mL</td>
<td>15 mg/min for 30 min</td>
<td>1.00 mg/min</td>
</tr>
<tr>
<td>Above 6 mcg/mL</td>
<td>20 mg/min for 30 min</td>
<td>1.25 mg/min</td>
</tr>
</tbody>
</table>

Neonates (less than 1 month): 15 to 20 mg/kg/day in 3 to 4 equal doses. The lower dosage may be adequate for small prematures.

Pediatric patients 1 month of age to 16 years: Parenteral (Intravenous) Administration: 20 to 40 mg/kg/day in 3 or 4 equal doses. The higher doses would be used for more severe infections. As an alternative to dosing on a body weight basis, pediatric patients may be dosed on the basis of square meters body surface: 350 mg/m²/day for serious infections and 450 mg/m²/day for more severe infections.

Parenteral therapy may be changed to oral clindamycin palmitate hydrochloride powder for oral solution or clindamycin hydrochloride capsules when the condition warrants and at the discretion of the physician.

In cases of β-hemolytic streptococcal infections, treatment should be continued for at least 10 days.

Dilution for Intravenous use and Intravenous Infusion Rates: The concentration of clindamycin in diluent for infusion should not exceed 18 mg per mL. Infusion rates should not exceed 30 mg per minute. The usual infusion dilutions and rates are as follows:

<table>
<thead>
<tr>
<th>Dose</th>
<th>Diluent</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>300 mg</td>
<td>50 mL</td>
<td>10 min</td>
</tr>
<tr>
<td>600 mg</td>
<td>50 mL</td>
<td>20 min</td>
</tr>
<tr>
<td>900 mg</td>
<td>50–100 mL</td>
<td>30 min</td>
</tr>
<tr>
<td>1200 mg</td>
<td>100 mL</td>
<td>40 min</td>
</tr>
</tbody>
</table>

Administration of more than 1200 mg in a single 1-hour infusion is not recommended.

Parenteral drug products should be inspected visually for particulate matter and discoloration prior to administration, whenever solution and container permit.

DIRECTIONS FOR USE

Clindamycin in 5% Dextrose Injection in GALAXY Plastic Container

Premixed Clindamycin in 5% Dextrose Injection is for intravenous administration using sterile equipment. Check for minute leaks prior to use by squeezing bag firmly. If leaks are found, discard solution as sterility may be impaired. Do not add supplementary medication. Parenteral drug products should be inspected visually for particulate matter and discoloration prior to administration whenever solution and container permit. Do not use unless solution is clear and seal is intact.
Caution: Do not use plastic containers in series connections. Such use could result in air embolism due to residual air being drawn from the primary container before administration of the fluid from the secondary container is complete.

Preparation for Administration:
1. Suspend container from eyelet support.
2. Remove protector from outlet port at bottom of container.
3. Attach administration set. Refer to complete directions accompanying set.

HOW SUPPLIED
Each mL of Clindamycin in 5% Dextrose Injection contains Clindamycin phosphate, USP equivalent to 300 mg, 600 mg, or 900 mg clindamycin; 2.5 g dextrose hydrate, USP; 2 mg edetate disodium dihydrate, USP; and Water for Injection, USP. pH may have been adjusted with sodium hydroxide and/or hydrochloric acid. The single dose GALAXY containers are available as follows:

<table>
<thead>
<tr>
<th>Code</th>
<th>Product Description</th>
<th>Container NDC Number</th>
<th>Carton NDC Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>2G3452</td>
<td>Supplied as 24 bags per case</td>
<td>300 mg per 50 mL</td>
<td>NDC 0338-3410-50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NDC 0338-3410-24</td>
</tr>
<tr>
<td>2G3453</td>
<td>Supplied as 24 bags per case</td>
<td>600 mg per 50 mL</td>
<td>NDC 0338-3612-50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NDC 0338-3612-24</td>
</tr>
<tr>
<td>2G3454</td>
<td>Supplied as 24 bags per case</td>
<td>900 mg per 50 mL</td>
<td>NDC 0338-3814-50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NDC 0338-3814-24</td>
</tr>
</tbody>
</table>

Exposure of pharmaceutical products to heat should be minimized. It is recommended that GALAXY plastic containers be stored at 20° to 25°C (68° to 77°F)[see USP Controlled Room Temperature]. Avoid temperatures above 30°C.

REFERENCES